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A systematic theory for the dynamics of charge-stabilized colloidal suspensions of interacting Brownian
particles with both Coulomb and hydrodynamic interactions is presented. A nonlinear deterministic diffusion
equation for the average local volume fraction of macroidr{x,t) and a linear stochastic diffusion equation
for the nonequilibrium density fluctuations aroudd both of which contain an anomalous self-diffusion
coefficientDg~[1—®(x,t)/¢4]”, are derived, wherg=1 here. The glass transition volume fractigy is
found to be small aaﬁgfv(ZqIB/a)’3 for highly charged colloidal suspensions witt»q, whereZeis the
charge of the macroions; ge is the charge of counterionls is the Bjerrum length, and is the radius of the
macroions. The dynamic anomaly Di(®), which results from the correlations among macroions and coun-
terions, due to long-range Coulomb interactions, is shown to cause slow dynamical behavigy nddnis
situation is exactly the same as that of the hard sphere suspensions previously discussed by the present author,
where y=2.[S1063-651X98)51309-9

PACS numbes): 82.70.Dd, 05.40tj, 61.20.Gy, 64.70.Pf

In recent years, there has been considerable experimentdle total volume of the system, arda.>1, m/m:>1, and
and theoretical interest in understanding the mechanism fo£/gq>1. Here the global charge neutrality requires thAat,
the liquid-glass transition in colloidal liquids—4]. At low =gn.. In the absence of added salt, one can assume the
electrolyte concentrations, highly charged colloidal suspentollowing pair interaction potentiald/,,(r), Vy(r), and
sions show a glass transition even at extremely low volum®/c(r) between macroions and counteriof: BV nn(r)
fractions, while hard-sphere suspensions show the transitiort Z°lg/r for r>2a and for r<2a, BVpy(r)=—-Zqlg/r
at high volume fractions. In an earlier pagéi, Tokuyama for r>a and for r<a, and BV{(r)=0lg/r, wherer is
and Oppenheim presented a general theory for the dynamidge interparticle distancéz=e?/kgT is the Bjerrum length,
of concentrated hard-sphere suspensions and showed that #d 8=1/kgT. The fluctuating velocity field of the fluid is
correlations between particles, due to many-body, long-rang@ssumed to be described by the fluctuating, linear Navier-
hydrodynamic interactions, play an important role in the Stokes equation, supplemented by stick boundary conditions

dynamics of the supercooled colloidal fluid near the glas&t the surfaces of the spheres. Then, the system has three
. . HS_ /413 macroscopic characteristic lengths: the radius of macroions
transition volume fraction¢y~=(5)/(7 In 3—8 In 2+2)

a, the hydrodynamic screening lengih=(6man,,) *?

~0.5718... . On theother hand, our understanding of —a/(9¢/2)Y/2 within which the hydrodynamic interactions
charge-stabilized colloidal suspensions seems to still be far

from complete, although there have been many works on
them. In this paper, therefore, we apply the same formalism
as that introduced in Ref5] to charge-stabilized, monodis-
perse colloidal suspensions and derive the coupled diffusion
equations for the average number density of macroions and
the nonequilibrium density fluctuations around it. Thus, we
show that the correlations among macroions and counterions,
due to many-body, long-range Coulomb interactions, play an
important role in the slow dynamics near the glass transition
volume fractiongy(I'), which becomes extremely small as <
¢g~F‘3 for largeI” (see Fig. 1, wherel'=Zqlg/a is the
dimensionless coupling parameter between macroions and
counterions.

We consider a three-dimensional suspension of ionized
spherical colloidal particles in a polar fluid. In the following,
we restrict ourselves to the simple case in which the concen-
tration of added salt is ignored. Thus, the system consists of
two ionized spherical particles in an incompressible fluid
with viscosity » and the static dielectric constagitthe mac-
roions of radiusa, massm, chargeZe and position vector
Xi(t) (i=1,2,...Ny) with the number densityn,
=N,,/V, and the counterions of radiwg., massm;, and FIG. 1. Glass transition volume fractiofi; versusI'. The ar-
chargege with the number density;=N./V, whereV is  row indicatespy® at I'=0.
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between macroions become import§6f6]; and the Debye forces between macroions and counterions, &g(d)
screening lengthp = (47n.q%ls) Y?=al/(34T)" where =D (1-250/16), the short-time self-diffusion coefficient
$=4ma’n,/3 is the volume fraction of the macroions. For due to the static hydrodynamic interactions up to okigB].
highly charged colloidal suspensions, the lendih®nd\p  Here the renormalized Oseen tensgy(t) is given by Eq.
can be larger tham; |y~\p>a>a.. In fact, for a typical (424 of Ref. [5]. The functions H™(x,,x,,t) and
suspension  with I'=3.684 ~where Z=280, q=1, pymqy, x¢ 1) represent the pair correlation functions be-

a=55.4nm, andg=7.29 A [7], we havexp,~3.64a, and - -
’ ’ S t t ,tol t
|y~5.7a at »=6.8x10 3. Hence, there are four important ixveven ggcg)rl:jr;; and counterions and obey, to lowest order
21 2 ]

characteristic times: the relaxation time of the momentum
contained in the fluid volume of siz& ¢~ pa®/ 5; the mo-

mentum relaxation time of the macroiong~m/{; the 9 ymm 2 ymm

Y A — = + -
screening timery~ 74/ ¢; and the structural relaxation time gt 170 Xe) =Do(14€12)| VaHTX, %) = BV
TS~IE|/D0, which is a time required for a macroion to dif-
fuse over a distanc; , where{=6m7a is the bare friction X | FIMn(x,)n(Xy )
coefficient of a macroionp is the fluid mass density, and

Do=kgT/{ is the single-macroion diffusion coefficient. Here

g IS the same order asy sincem<(X;)2>~m(ly/7y)? +f dxgFosNC(xX5)H™ (X1 ,X5)

~kgT~0O(1), leading to 7g> 7y~ 75> 75 . Depending on

the space-time scales, therefore, there are two characteristic

stages. One is a kinetic stage€), where the space-time cut- +f dx3F25™n (%) H™(X4 ,X3)

off (X¢c,7c) is set asly~Ap>Xc>a and 7y~ > 7¢

>7;. The other is a suspension-hydrodynamic stégjd), J

whereXc>1y and 7¢> 7> 7y . c c - c c
The r():resgnt sys?em Cobe;s the same starting equations as gt Hmc(xl’XZ):D0(1+elz)[V2 H™(x1,%2) = BV

those of the hard-sphere suspension discussed in[BEf.

except that the forces between particles are now replaced by

the Coulomb forces. In thK stage, therefore, one can find a

set of Markov Langevin equations for the positig(t) and

the velocityu;(t) of the macroion. In order to discuss the CM G4 g MM

kinetic process of the counterions, one can also derive a set +f AXaF2an" () H™(Xq  X)

of Markov Langevin equations for the positimf(t) and the

], ()

X

21n°(X3)N(xy)

velocity uj(t) of the counterionj, which have the same +f dXSFSENS(XS) H™( x4 ,XS) ]
forms as those of macroions, except that the physical con-
stants, such am, are replaced by those of the counterions. +0(D,/DY), @)

Starting from those Langevin equations and employing the
formalism similar to that in Ref5], in the SH stage one can .. ) ) - - _
then obtain the diffusion equation for the average numbelvhereDg is the single-counterion diffusion coefficient with

densityn(x,t) of macroions, up to ordey?, Do/Dg=ag/a<1, n°(x;5,t) is the average number density
s of the counterionsg;; is the exchange operator betweend
9 NX,1)=V- Ds(®) j, andV5=d/dx5. Here the first two terms of Eq2) repre-
at ' 1+[<I>(x,t)D§(<I>)/¢g'SDO] sent the correlation effects of the long-range Coulomb inter-
actions between macroions and counterions separated by a
X[Vn(x,t)—C(x,t)]], 1) d_istf';lnce of ordehp and_a_re of ordel_gzsl/z. Those terms are
similar to the soft-collision term in the one-component
_ _ plasma[8]. On the other hand, the last two terms of E2).
with the correlation term represent the couplings between the correlation effects of the
long-range Coulomb interactions and the long-range hydro-
C(xl,t)=ﬁ[ j dxoFTH™™(Xq , %o, t) dynamic interactions between macroions separated by a dis-

tance of ordet, and are of ordegb. In order to include the

CmeL s me . effect of the hydrodynamic interactions on E#y), therefore,

+f dxzFH™ (X1, %3,1) we have retained the terms up to ordrin order to derive
Eqg. (2), we have also neglected the terms due to the short-

—n(xt) | dxogry range i_nteractions between partigles, since they lead only to
L 2012 %21 corrections at small volume fractions.
In the SH Stage the length scag| of interest is longer
« f AXaFIH™™M (%, X5, 1) than\p, and the time scale is of ordes, while the inter-
particle distancegx;—x,| and |x;—x5| are of order\p.
Hence, one can further expamgx,,t) andn®(x;,t) about
+J dX§FTH ™ (%2, %5 1) ] (2 x,. SinceDy/D§=ay/a<1, the dynamics of the counteri-

ons surrounding the macroions follows the motion of the
where ®(x,t) = ¢n(x,t)/n,, denotes the time-dependent lo- macroions in this stage. Then, one can assume that

cal volume fraction of the macroionsEf}ﬁ the Coulomb  n®(x,t)=(Z/q)n(x,t). By solving Egs(3) and(4), to lowest
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FIG. 2. Short(dotted-dashed lineand long(solid ling) time

self-diffusion coefficients versus separation parametemat I" . . . .

. . FIG. 3. Self-intermediate scattering functiéry(k,t) as func-
=3.684. The long-dashed line and the dotted line represent thﬁons of the logarithm of the rescaledgti'm t/(:}(for)¢:6.834
short- and the long-time, self-diffusion coefficients obtained in Ref'x10*3 (dotted-dashed line 7.609< 10" 3 (¢,) (dotted ling, and

[5], respectively. 7.899x 10 2 (solid ling). The symbolO indicates the crossover

order inV andq/Z, we thus obtain the nonlinear determin- fime t-
istic diffusion equation fon(x,t): the fact that the terms screened by the short length of order
Ap(a/Z)Y? in C(x,t) vanish in the limitq/Z—0 at fixed
(d9lat)n(x,1)=V-[Dg(P(x,1))Vn(x,t)], 5 \p.
The nonlinear deterministic diffusion equatidb) de-
with the self-diffusion coefficient scribes the slow dynamics of spatial heterogeneities #gar
that is, the time evolution of long-lived, irregularly shaped
Ds(®)=D(®)[1-V3{D¥?—(3/\8)D}I' 32— D/ (] domains with®(x,t)= ¢, from completely random, initial
configurations withd (x,0) to equilibrium uniform state with
=D(D)[1— (/) [ 1— (D] o)V, (6)  ®(x,2)=¢. On the other hand, the linear stochastic diffu-
sion equatior(8) describes the slow relaxation of the density
where $o= (413)[T¥2— T3~ J6I'¥2+4/(3¢4,")]>  fluctuations around the nonequilibrium state determined by
(= ¢5%). Here the glass transition volume fractigg dilute ~ ®(x,t). The most important feature of Eqe5) and (8) is
charged colloidal suspension is given by that the self-diffusion coefficienDg(®) becomes zero as
Dg(®)~(1-D/¢g)” near ¢y, wherey=1 here. This dy-
¢>g=(§)/[1“3’2+ \/F3—\/€F3/2+4/(3¢gs)]2, 7) namic anomaly causes the slow dynamical behavior near

¢q. This situation is exactly the same as that of the hard-
sphere suspension, discussed in REs:11], where y=2.
In fact, there exists a crossover from the short-time diffu-
sion process with the time scale of ordegr= 2wa?/DY( )

wherel’=Zqlg/a. As the value ofl" increases¢, becomes
small, while it reduces t@§® in the limit of the hard sphere
I'—0 (see Fig. 1L As discussed in Refl9], the relative . e . .
magnitude of the density fluctuatiordn(x,t) to the causal to the long-time 2d|ffLLJSI0n process with the time s_cale
motion, | dn/n|, is small. By expanding Eq5) in powers of of orde; tazzﬁi/z/DS(qs) arOLLmd the crossover time
|6n/n| and retaining the lowest-order terms, therefore, ondg™2ma/(DsDs)™*[9], whereD(¢)=Ds(¢) is the long-
can also find the linear stochastic diffusion equation fortime self-diffusion coefficient, antl,<t;<t,. In Fig. 2 we

on(x,t), plot the separation parameter= ¢/¢,—1 dependence of
Ds(¢) and DE(¢) at I'=3.684 (¢y=0.0079), whereD}
(dlat) on(x,t) =V Dg(®(x,1))on(x,t) ]+ &(xt), (8)  ~|o| neargy. For comparison, the theoretical results ob-

tained in Ref[5] are also shown in Fig. 2, whe2t~|o]|?
where the random forcg(x,t) obeys a Gaussian, Markov near g, .
process with zero med®]. Here we note that the last term  The dynamics of density fluctuations can be measured by
of Eq. (3) screens the long-range interactions between maadynamic light scattering through the self-intermediate-
roions with the length of ordekp(q/Z)? while the last scattering functiorF(k,t), which is given by the Fourier
term of Eq.(4) screens the long-range interactions between aransform of the autocorrelation function of the density fluc-
macroion and a counterion with the length of ordey. In tuations when a scattering vector is much larger than the
order to find the coefficienDg(®), therefore, we have used maximum position of the static structure facfét. In Fig. 3,
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0 — — — — decays quickly to zero, while abové,, the shape of
i F<(k,t) becomes very sensitive to the valuedfforming a
shoulder that becomes a plateau with the hef§fe,,ka,I")
at ¢4. The plateau height® decreases ag decreases or as
ka increases, while it is a weak function bf
In Fig. 4 we plot the self-part of the dynamic susceptibil-
ity given by x§(k,t) = w[jcost)Fgkt)dt at the same con-
ditions as those in Fig. 3. Abowg, there are two peaks and
one minimum, while belows, there is one peak at the fre-
quencyw,=2mw/t,. The first peak is the so-calledpeak at
w,=27lt,, and the second peak is the so-calfegeak at
o,. The minimum atwz=2m/t; corresponds to the cross-
I . over pointinFg(k,t) atts. Thus, the crossover volume frac-
3 i s ] tion ¢, is defined by the value o at which the minimum
F ] of xy& appears. With increasing volume fraction at fixad
S/ ] ka, andI’, therefore, we observe a progression from colloidal
; . o fluid (O<¢p<d¢p) to supercooled colloidal fluid =< ¢
E— E— — <¢y) to glass pg=¢).
-6 4 2 ° 2 In conclusion, we have derived the coupled diffusion
log, ( wa®/D,) equatio_ns{S) and(8) to s'gudy the _slow dynamics of a _dilute,
monodisperse suspension of highly charged colloids. The
FIG. 4. Log-log plot of the self-part of dynamic susceptibility COrrelations among macroions and counterions, separated by
X4k, ) as a function of the logarithm of the rescaled frequency@ distance of ordex, due to the long-range Coulomb inter-
wa?/D,. Details are the same as in Fig. 3. The symbdhdicates ~ actions, have been shown to cause the dynamic anomaly of
the crossover frequenay,. the diffusion coefficient. Thus, we have found that the phase
behavior and structure of a highly charged colloidal suspen-
sion are similar to those of hard-sphere suspensions, dis-
. o T 5 cussed in Refd.9-11], where the correlations between par-
various volume fraCt'Of‘?' $=6.834<10" ", 7.609 icjes separated by a distance of ordigr due to the long-
x107*(¢p), and 7.89K10 °, where ¢4(zo.ka,I'), de- e hydrodynamic interactions, lead to the dynamic

fined below, indicates the crossover volume fraction abovecmomaly. The detailed analysis of E4S) and (8) will be
which the system becomes a supercooled colloidal fluidyiscussed elsewhere.

Here the parameter, measures how close the initial state of

the system is to the equilibrium stateee Ref[10] for de- This work was supported by the Tohwa Institute for Sci-
tails). For a small volume fraction less thapg, Fg(k,t) ence, Tohwa University.
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logw |:xs"(k’(’)):|

we show Fg(k,t) at z;=0.8, ka=1.3, andI'=3.684 for
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